
1 Computing Spill Quality Analytically

We know that as the system approaches the resonant tune, the area of the separatrix shrinks, and
the particles become unstable and its position starts to increase non-linearly given enough time.
The shape of the separatrix is triangular and the distribution of particles is very close to Gaussian.

But since we are interested only in the shape and form of the spill rate, we can assume
the separatrix to be circular instead of triangular and try to analytically compute the rate of spill.

All the particles that are out of the circle are counted as ‘extracted’. If we shrink the
circle at just the right rate, we would extract equal number of particles with every time step. Let
us see how to get the radius values in time that would give us the ideal constant spill rate.
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1.1 Particle Density Function

If we want to find the total number of particles N within a radius r0 with the particle density
function being f(r), then.
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0
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0

f(r)r dr dφ

We see that if the particle density is a constant one (n0, say), then,
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This is exactly what you would expect for a uniform density of particles. But if we instead had
a Gaussian distribution in place of uniform distribution with a standard deviation σ, the total
number of particles N within a given radius r0 would be,

N =

∫
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∫
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)

To normalize this, let us divide the integral by 2πσ2 so that when integrated from r = 0→∞, we
get the integral to be 1 (this way, we could talk of the fraction of particles). Thus the normalized
density function would be,

f(r) =
1

2πσ2
e−r

2/2σ2

Even though the Gaussian tail technically extends till infinity, let us have a cut-off radius
of rmax = 6σ to account for almost all the particles. If we normalized the density function and
plugged in a value of σbeam = 1.58 mm in x-coordinate, we get fraction of particles under a certain
radius r, computed from r = 0 to r = 6σ.
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We see that initially as r increases from zero, the number of particles covered within that
radius of circle N increases. But as you keep increasing r, the number of particles covered within
that circle does not increase as much because the particle density wanes off exponentially (as a
Gaussian naturally does), and thus the fraction of particles contained within that radius starts to
saturate asymptotically towards 1.

In our spill process, we need a uniform spill quality for over Nturn turns. In other words,
we need a fraction of Nparticles/Nturn to get extracted on every turn if we need a uniform extraction
rate. This mathematically translates to the condition that the area under the density vs r curve
in the above plot for r1 to r2 must be the same as the area under curve for r2 to r3.∫
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f(r)r dr =

∫
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For a Gaussian density, this means,∫
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We can thus solve for the next radius r3 which would give you the same value of area
under the curve between r2 and r3 as the value of area under the curve between r1 and r2. We
get,

=⇒ r3 =
√
−2σ2 log

(
2e−r

2
2/2σ

2 − e−r21/2σ2
)

(1.1)

And we can find all of the subsequent radii r4, r5, ..., rNturn iteratively! To kick-start this
process from r = 0 to r = r1 and find the first radius r1, we need to know the exact fraction we
want to extract. Our spill requirements are that a uniform fraction must be extracted every turn.
If the total spill time is Tspill and if our cyclotron time period is Tcycl., then we get a total number
of turns to be Tspill/Tcycl. = Nturn. We hence need a fraction of 1/Nturn particles extracted every
turn. And that gives us our first r1,∫

r1

0

f(r)r dr = 1/Nturn (1.2)

=
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With a beam rms size of σbeam = 1.58 mm and an Nturn of 25371, we get r1 to be about
0.00354 mm. And we can thus iteratively compute the next ‘Nturn−1’ number of radii values that
would give us uniform fraction of particles contained in the area enclosed between rn and rn+1.

1.2 Introducing Noise

The value of the radius of separatrix is controlled directly by the excitation current given to the
quadrupole. Since the excitation current is drawn from the power supply and there is noise from
the power supply in the form of random spikes and ripples, the excitation current given to the
quadrupole would be marred and superimposed with the noise content.

The random noise and spikes arising from the power supply can thus be included to the
ideal spill by adding the noise to the radius value for each turn (r1+δ1, r2+δ2, ..., rNturns +δNturns).
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The fast varying noise in the power supply (and thus consequentially the fluctuations in
magnetic field in the quadrupole) can have many range of frequencies in it. However, not all of
the resulting fluctuation in the magnetic field penetrates through the steel beam pipe and affects
the beam. The steel beam pipe shields any frequency larger than around 2000 hertz.

Hence in our analytical model, we need to pass the randomnly generated noise profile
through a low-pass filter. We have some empirical measurement of how much magnetic field the
beam pipe shields, so we can put in the order of the filter to simulate the real world as close as
possible.
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After adding the noise to the ideal radius values, the extraction rate won’t be a flat line but will
vary with respect to the added noise profile.

1.3 Relation to tune distance

In a regular sextupole drive third-integer resonance extraction, the length of the side of triangular
separatrix is approximately given by,

x0 =
16πδ

A

where δ is the tune distance of machine from the resonant tune, given by δ = νmachine − νresonance,
and the parameter A is proportional to the sextupole strength, given by,

A =
β0
Bρ

∮ (
β

β0

)(
B′′

2

)
cos (3ν0φ) ds

Since we have approximated the sepratrix to be circular, let us continue with that scheme
and see how the radius evolution relates to tune evolution. We can take the radius of our circle
to be about half of the side of the triangle, r = x0/2 = 8πδ/A. So if the sextupole strength is
constant, the tune distance is directly proportional to the radius (barring numerical factors).

δ(r) ≈ A

8π
r

If we have a sextupole strength of 500 T/m2 and a magnetic rigidity of 29.15 T-m, and
assume that the Courant-Snyder β at the observation point to be 12 m and at sextupole to be 9 m,
and assuming a sextupole length of 0.5 m, we get A to be 0.0596. Since we already have computed
the r-s on the RHS, we can get the respective tune values, and thus, the tune-ramp function!
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And the corresponding density function (in congruence, the number of extracted particles)
when computed with the respective r-s is now a linear function, as expected:
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The above scheme employed is under the assumption that the separatrix is circular and
the beam distribution is Gaussian. In real life, the separatrix is triangular, the beam distribution in
the stable region may not remain Gaussian throughout the extraction, the beam may not always be
perfectly centered, the particles near the stationary points are going to move slower than the ones
away from it, and so on. The above scheme also assumes the particle is ‘immediately’ extracted
once it goes out of the separatrix, which is also not the case as the particle takes a finite transit time
(and more than one jump) to get past the septum, and this transit time may also vary depending
on where the particle radially is in the phase-space.

That said, we could expect the tune ramp curve for the real world triangular separatrix
to be similar in quality as the one we derived above.

7


